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ABSTRACT 

An operator 𝐵 is a commutant of the unbounded Self-adjoint operator with simple spectra 𝐹 if 𝐵𝐹 ⊆ 𝐹𝐵. The properties of the commutant are determined by those of the operator 𝐹. In this article, 

we show that the spectrum of these commutants is a subset of the real number set. We also establish 

the effect of the spectral properties of the unbounded Self-adjoint operators with simple spectra to 

the spectrum of its commutant. Finally, we show that the spectral measure of the unbounded Self-

adjoint operator with simple spectra is a scalar multiple of that of its commutant. 

Keywords: Unbounded operators, Self-adjoint operators, spectral theorem, operators with simple 

spectra 

 

1. INTRODUCTION 

The concept of commutativity is of great importance, especially in quantum mechanics. For instance, 

it enables one to measure the quantity of the two observables, simultaneously, without the need of 

invoking the uncertainty relation, [3]. Our interest is to look at the commutativity relation with 

respect to the unbounded operators, specifically, the commutants of the unbounded Self-adjoint 

operators with simple spectra. An operator 𝐵 is a commutant of the unbounded operator 𝐹 if 𝐵𝐹 ⊆ 𝐹𝐵. The spectrum of Self-adjoint operators is known to be a subset of the real number set, [1]. 

This fact is true for both bounded and unbounded operators. However, the spectrum of their 

commutants in relation to those of these operators, specifically, the unbounded Self-adjoint operators 

with simple spectra has not been yet established. This paper seeks to establish these relations and in 
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turn, characterize the spectral properties of the commutants of unbounded Self-adjoint operators with 

simple spectra. 

The commutants of unbounded Self-adjoint operators are said to be bounded, [1]. The boundedness 

is a tool in helping us explore its properties. From the commutativity relation of two operators, the 

properties of one operator most likely to determine those of the other. In particular, the spectral 

properties of the unbounded Self-adjoint operator with simple spectra most likely determines those 

of its commutants. To establish to what extent this is true, we will use the spectral theorem of 

unbounded Self-adjoint operators as well as the properties of these operators. Our underlying space 

will be a complex Hilbert space.  

 

2. PRELIMINARY CONCEPTS 

In this section, we discuss, in brief, some basic concepts required to effectively discuss the results of 

our paper. We will use ℍ to denote a Complex valued Hilbert space over a field 𝔽. Our unbounded 

Self-adjoint operator whose properties will be exploited will be denoted by 𝐹 while its spectral 

measure by 𝑃(𝜆) for 𝜆 ∈ 𝜎(𝐹) where 𝜎(𝐹) is the spectrum of the operator 𝐹. The restriction of an 

operator 𝐹 on ℍ𝑖 ⊆ ℍ will be denoted by 𝐹|ℍ𝐼 . We begin by providing a few definitions for the 

terms that will commonly be used in this paper. 

Definition: Unbounded operator 

Let 𝐹 ∶  𝐷(𝐹) ⊆  ℍ1 →  ℍ2 be an operator, then 𝐹 is said to be unbounded. Furthermore, there is no 

positive constant 𝑀 such that ‖𝐹𝑥‖ ≤ 𝑀‖𝑥‖ . The operator 𝐹 is densely defined if 𝐷(𝐹) = ℍ1.  

Definition: Commutant of an unbounded operator 

An operator B is a commutant of the unbounded operator 𝐹 if 𝐵𝐹 ⊆ 𝐹𝐵. 

Definition: Operator with simple spectra 

An operator 𝐹 has a simple spectra if the multiplicity of any 𝜆 ∈ 𝜎(𝐹) is 1. 

To understand the spectral properties of the unbounded Self-adjoint operators, we need to understand 

what a spectral measure is. In the same spirit, we provide the definition. 

Definition: Spectral measure 

Let 𝑋 be a set and 𝔵 its 𝜎-algebra, then the operator 𝑃(⋅) from 𝔵 to the Hilbert space ℍ is a spectral 

measure if  

i. 𝑃(𝜃) is an orthogonal projection, that is, 𝑃2(𝜃) = 𝑃(𝜃)  and 𝑃∗(𝜃) = 𝑃(𝜃), 𝜃 ∈ 𝔵  

ii. 𝑃(𝑋) = 1 

iii. 𝑃( ⋃ 𝜃𝑖∞𝑖=1 )  = ∑  𝑃(𝜃𝑖)∞𝑖=1   for 𝜃𝑖 ∈ 𝔵, 𝑖 ∈ Λ such that 𝜃𝑖 ∩ 𝜃𝑗 = ∅   for 𝑖 ≠ 𝑗 and ⋃ 𝜃𝑖∞𝑖=1 =𝑋.  

The structure of Self-adjoint operators makes it easier to study its properties as well as understand 

the nature of spaces onto which it acts upon. Its structure is summarized by the spectral theorem 

which is provided for bounded as well as the unbounded version. The spectral decomposition of the 

unbounded Self-adjoint operator states that if 𝐹 is an unbounded Self-adjoint operator on a Hilbert 

space ℍ, then there exists a unique spectral measure 𝑃𝐹 , dependent on 𝐹, on the Borel sigma-algebra 𝐵(ℝ) such that 
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𝐹 = ∫ 𝜆 𝑑𝑃𝐹(𝜆)ℝ , [5]  
the unbounded Self-adjoint operators can be found in [1, 2, 5]. In [5], we get that the commutants of 

unbounded Self-adjoint operators, 𝐹 also commutes with the spectral measures of the operators, 𝑃𝐹(𝜆). For convenience, we use 𝑃(𝜆) to imply 𝑃𝐹(𝜆) when there is no room for confusion. 

Therefore, we have the relation, if 𝐵𝐹 ⊆ 𝐹𝐵, then 𝐵𝑃𝐹(𝜆) = 𝑃𝐹(𝜆)𝐵,  to be precise, 𝐵𝑃(𝜆) =𝑃(𝜆)𝐵.  

We now proceed to our results. 

 

3. SPECTRAL PROPERTIES OF THE COMMUTANTS 

This section provides the results of this article. We provide the expression for the numerical range of 

the commutants of the unbounded self-adjoint operators with simple spectra. The expression is 

fundamental in characterizing the spectral properties of the commutants. 

Proposition 3.1  

The numerical range of the commutants of the unbounded Self-adjoint operators with simple spectra 

is real. 

Proof 

Let 𝐹 be the unbounded operator with simple spectra and 𝐵 its bounded commutant. Then, 𝐵𝐹 ⊆𝐹𝐵.  

Since 𝐹 is unbounded Self-adjoint operator, by the spectral theorem, [5] there exists a unique spectral 

measure 𝑃𝐹, dependent on 𝐹, on the Borel sigma-algebra 𝐵(ℝ) such that 𝐹 = ∫ 𝜆 𝑑𝑃𝐹(𝜆)ℝ ,    𝜆 ∈ ℝ.   
From the relation, 𝐵𝐹 ⊆ 𝐹𝐵, we have 𝐵𝑃𝐹(𝜆) = 𝑃𝐹(𝜆)𝐵 or 𝐵𝑃(𝜆) = 𝑃(𝜆)𝐵 [2].  

The underlaying space for the unbounded Self-adjoint operators with simple spectra is a separable 

Hilbert space. Further, the orthogonal direct sum of the null spaces of ℍ gives us the whole space, ℍ. 

Thus (3.1)                                                                                       ℍ = ⨁ ℍ𝑖𝑖∈ℕ           
where the null spaces of 𝐹 − 𝜆𝐼 are ℍ𝑖 [4]. These null spaces are the span of the eigenvectors of the 

operator 𝐹. The unbounded Self-adjoint operators with simple spectra have cyclic vectors and each 

of the null spaces ℍ𝑖 , has at least one cyclic vector, [5]. Let 𝑥 be a cyclic vector of the operator 𝐹|ℍ𝐼  such that ‖𝑥‖ = 1. If 𝜆𝑖 ∈ 𝜎(𝐹|ℍ𝐼), then (3.2)                                                                          Span(𝑃(𝜆𝑖)𝑥) = ℍ𝑖     [5].  
Let 𝑥 ∈ 𝐷(𝑃(𝜆𝑖)), then  〈𝐵𝑃(𝜆𝑖)𝑥, 𝑥 〉 = 〈𝑃(𝜆𝑖)𝑥, 𝐵∗𝑥〉 
          = 〈𝑃2(𝜆𝑖)𝑥, 𝐵∗𝑥〉 
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          = 〈𝑃(𝜆𝑖)𝑥, 𝑃∗(𝜆𝑖)𝐵∗𝑥〉 
          = 〈𝑃(𝜆𝑖)𝑥, 𝑃(𝜆𝑖)𝐵∗𝑥〉 
Thus, 𝐵∗𝑥 ∈ 𝐷(𝑃(𝜆𝑖) for 𝜆𝑖 ∈ 𝜎(𝐹|ℍ𝐼) . Since Span(𝑃(𝜆𝑖)𝑥) = ℍ𝐼, there exists a nonzero 𝑘 ∈ 𝔽  
such that       𝐵∗𝑥 = 𝑘 𝑃(𝜆𝑖)𝑥. 

Therefore  〈𝐵∗𝑥, 𝑥〉 = 〈𝑘𝑃(𝜆𝑖)𝑥, 𝑥〉   〈𝑥, 𝐵𝑥〉 = 〈𝑘𝑃2(𝜆𝑖)𝑥, 𝑥〉 
 = 𝑘〈𝑃2(𝜆𝑖)𝑥, 𝑥〉 
 = 𝑘〈𝑃(𝜆𝑖)𝑥, 𝑃(𝜆𝑖)𝑥〉 
 = 𝑘‖ 𝑃(𝜆𝑖)𝑥‖2 

We have 〈𝑥, 𝐵𝑥〉 = 𝑘‖ 𝑃(𝜆𝑖)𝑥‖2, taking conjugates and simplifying further, we have    〈𝑥, 𝐵𝑥〉 = 𝑘‖ 𝑃(𝜆𝑖)𝑥‖2  〈𝑥, 𝐵𝑥〉  = 𝑘‖ 𝑃(𝜆𝑖)𝑥‖2  〈𝐵𝑥, 𝑥〉 = 𝑘  ‖ 𝑃(𝜆𝑖)𝑥‖2 〈𝐵𝑥, 𝑥〉 = 𝑘  ‖ 𝑃(𝜆𝑖)𝑥‖2 

The relation 

  (3.3)                                                            〈𝐵𝑥, 𝑥〉 = 𝑘 ‖ 𝑃(𝜆𝑖)𝑥‖2 

is true only if 𝑘 ∈ ℝ.  Therefore, 〈𝐵𝑥, 𝑥〉 = 𝑘‖ 𝑃(𝜆𝑖)𝑥‖2 ∈ ℝ, if 𝑘 ∈ ℝ. Thus, 〈𝐵𝑥, 𝑥〉 ∈ ℝ.  

We now prove that 𝑘 ∈ ℝ. 
  

Let 𝑘 = 𝑎 + 𝑏i for 𝑎, 𝑏 ∈ ℝ  then 〈𝐵𝑥, 𝑥〉 = 𝑘‖ 𝑃(𝜆𝑖)𝑥‖2 is equivalent 〈𝐵𝑥, 𝑥〉 = (𝑎 + 𝑏i )‖ 𝑃(𝜆𝑖)𝑥‖2. Let            𝛼𝑖 ∈ 𝜎(𝐵|ℍ𝑖) and 𝑦 the corresponding eigenvector. Since 𝑦 ∈ ℍ𝑖 and ℍ𝑖 is one dimensional because 𝐹 has a simple spectra, there is a nonzero 𝑐 ∈ 𝔽 such that

  (3.4)                                                            𝑦 = 𝑐𝑥   𝑜𝑟   𝑥 = 1𝑐 𝑦 

Then 

         〈𝐵𝑥, 𝑥〉 = (𝑎 + 𝑏i)‖ 𝑃(𝜆𝑖)𝑥‖2 

         〈𝐵𝑥, 𝑥〉 = 𝑎‖ 𝑃(𝜆𝑖)𝑥‖2 + 𝑏i‖ 𝑃(𝜆𝑖)𝑥‖2       ⟨𝐵 (1𝑐 𝑦) , (1𝑐 𝑦)⟩  = 𝑎 ‖ 𝑃(𝜆𝑖) (1𝑐 𝑦)‖2 + 𝑏i ‖ 𝑃(𝜆𝑖) (1𝑐 𝑦)‖2
 

 
1|𝑐|2  ⟨𝐵𝑦, 𝑦⟩  = 𝑎|𝑐|2 ‖ 𝑃(𝜆𝑖)𝑦‖2 + 𝑏|𝑐|2 i‖ 𝑃(𝜆𝑖)𝑦‖2  
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        ⟨𝐵𝑦, 𝑦⟩  = 𝑎‖ 𝑃(𝜆𝑖)𝑦‖2 + 𝑏i‖ 𝑃(𝜆𝑖)𝑦‖2  
    𝛼𝑖⟨𝐵𝑦, 𝑦⟩  = 𝛼𝑖𝑎‖ 𝑃(𝜆𝑖)𝑦‖2 + 𝛼𝑖𝑏i‖ 𝑃(𝜆𝑖)𝑦‖2                     ⟨𝐵𝑦, 𝛼𝑖𝑦⟩  = 𝛼𝑖𝑎‖ 𝑃(𝜆𝑖)𝑦‖2 + 𝛼𝑖𝑏i‖ 𝑃(𝜆𝑖)𝑦‖2                     ⟨𝐵𝑦, 𝐵𝑦⟩  = 𝛼𝑖𝑎‖ 𝑃(𝜆𝑖)𝑦‖2 + 𝛼𝑖𝑏i‖ 𝑃(𝜆𝑖)𝑦‖2                        ‖ 𝐵𝑦‖2  = 𝛼𝑖𝑎‖ 𝑃(𝜆𝑖)𝑦‖2 + 𝛼𝑖𝑏i‖ 𝑃(𝜆𝑖)𝑦‖2 

The constant‖ 𝐵𝑦‖2 ∈ ℝ, as such ‖ 𝐵𝑦‖2  = 𝛼𝑖𝑎‖ 𝑃(𝜆𝑖)𝑦‖2 + 𝛼𝑖𝑏i‖ 𝑃(𝜆𝑖)𝑦‖2 only if the right-hand 

side is real. This means that 𝛼𝑖 ∈ ℝ and 𝑏 = 0. Consequently, 𝑘 = 𝑎 as required. 

Finally, we show that 〈𝐵𝑥, 𝑥〉 ∈ ℝ for all elements in ℍ. Let 𝑢 ∈ ℍ𝑖 ⊆ ℍ be arbitrary. Since ℍ𝑖 is 

one-dimensional subspace 𝑢 is of the form of 𝑦 in equation 3.4 above. The fact that 〈𝐵𝑥, 𝑥〉 turned 

out to be homogeneous and real, we have that 〈𝐵𝑢, 𝑢〉 ∈ ℝ  for all 𝑢 ∈ ℍ𝑖. The choice of ℍ𝑖 was 

arbitrary, consequently, the result is true for all nonzero subspaces ℍ𝑖 as well as all 𝑢 ∈ ℍ. 

Therefore, 〈𝐵𝑥, 𝑥〉 ∈ ℝ for all  𝑢 ∈ ℍ.  

Corollary 3.1  

If 𝐵 is a commutant of the unbounded Self-adjoint operators with simple spectra 𝐹, then 

i. 𝐵 is Self-adjoint 

ii. 𝜎(𝐵) ∈ ℝ.  

Proof 

(i.) Let 𝑥 ∈ ℍ where ℍ is a Complex Hilbert space and ‖𝑥‖ = 1. From proposition 3.1, 〈𝐵𝑥, 𝑥〉 ∈ ℝ, 
hence 〈𝐵𝑥, 𝑥〉 = 〈𝐵𝑥, 𝑥〉 = 〈𝑥, 𝐵𝑥〉 = 〈𝐵∗𝑥, 𝑥〉 
Hence 〈𝐵𝑥, 𝑥〉 − 〈𝐵∗𝑥, 𝑥〉 = 0 implying that 〈𝐵𝑥 − 𝐵∗𝑥, 𝑥〉 = 〈(𝐵 − 𝐵∗)𝑥, 𝑥〉 = 0. 
The operator 𝐵 is bounded then by Cauchy Swartz inequality |〈(𝐵 − 𝐵∗)𝑥, 𝑥〉| ≤ ‖〈(𝐵 − 𝐵∗)𝑥〉‖ ‖𝑥‖ = ‖(𝐵 − 𝐵∗)𝑥‖ 

When 〈(𝐵 − 𝐵∗)𝑥, 𝑥〉 = 0 we have ‖(𝐵 − 𝐵∗)𝑥‖ = 0. Since 𝑥 ≠ 0 and ℍ is a complex Hilbert 

space, we must have 𝐵 − 𝐵∗ = 0 or 𝐵 = 𝐵∗. Hence 𝐵 is a Self-adjoint operator.  

    

(ii). Let 𝑥 ∈ ℍ for 𝑥 ≠ 0 and 𝜆 ∈ 𝜎(𝐵), then (𝐵 − 𝜆𝐼)𝑥 = 0. Hence 0 = 〈(𝐵 − 𝜆𝐼)𝑥, 𝑥〉 = 〈𝐵𝑥, 𝑥〉 − 〈𝜆𝑥, 𝑥〉 = 〈𝐵𝑥, 𝑥〉 − 𝜆〈𝑥, 𝑥〉 = 〈𝐵𝑥, 𝑥〉 − 𝜆‖𝑥‖2 

Consequently, 〈𝐵𝑥, 𝑥〉 − 𝜆‖𝑥‖2 = 0 or 𝜆 = 〈𝐵𝑥,𝑥〉‖𝑥‖2  for all 𝑥 ∈ ℍ. 𝜆 = 〈𝐵𝑥,𝑥〉‖𝑥‖2 ∈ ℝ since 〈𝐵𝑥, 𝑥〉 ∈ ℝ. 

This is true for all 𝜆 ∈ 𝜎(𝐵)., then 𝜎(𝐵) ∈ ℝ.  

Corollary 3.2  

Let 𝐵 be a commutant of the unbounded Self-adjoint operator, 𝐹, with simple spectra having the 
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spectral measure 𝑃(𝜆𝑖), 𝜆𝑖 ∈ 𝜎(𝐹|ℍ𝑖). If 𝛼 ∈ 𝜎(𝐵),  then 𝛼 = 𝐶𝑝〈𝐵𝑥, 𝑃(𝜆)𝑥〉 for some positive 

constant 𝐶_𝑝. 

Proof 

Let ℍ𝑖 be a nonzero arbitrary subspace of ℍ such that ℍ = ⨁ ℍ𝑖𝑖∈ℕ . From the proof of proposition 3.1 above, Span(𝑃(𝜆𝑖)𝑥) = ℍ𝐼 hence for an eigenvector 𝑦 ∈ ℍ𝑖 of 𝐵|ℍ𝑖  and ‖𝑥‖ = 1, there is 

 𝛾 ∈ 𝔽, 𝛾 ≠ 0 such that  𝑦 = 𝛾 𝑃(𝜆)𝑥 

 By the commutativity relation, 𝐵𝑃(𝜆) = 𝑃(𝜆)𝐵, we have  

 〈𝐵𝑦, 𝑦〉 = 〈𝐵𝛾𝑃(𝜆)𝑥, 𝛾𝑃(𝜆)𝑥 〉 
               = |𝛾|2〈𝐵𝑃(𝜆)𝑥, 𝑃(𝜆)𝑥〉  

              = 𝛾2〈𝑃(𝜆)𝐵𝑥, 𝑃(𝜆)𝑥〉 
              = 𝛾2〈𝐵𝑥, 𝑃2(𝜆)𝑥〉 
              = 𝛾2〈𝐵𝑥, 𝑃(𝜆)𝑥〉. 
 We also have that  

 〈𝐵𝑦, 𝑦〉 = 〈𝛼𝑖𝑦, 𝑦〉 = 𝛼𝑖‖𝑦‖2 = 𝛼𝑖  
where 𝛼𝑖 in an eigenvalue of 𝐵|ℍ𝑖 corresponding to an eigenvector 𝑦. Thus, 𝛼𝑖 = 〈𝐵𝑦, 𝑦〉 =𝛾2〈𝐵𝑥, 𝑃(𝜆)𝑥〉. The value 𝛼𝑖 ∈ 𝜎(𝐵|ℍ𝑖) ⊆ 𝜎(𝐵), further, ℍ𝑖 was arbitrary, hence 𝛼𝑖 represents any 𝛼 ∈ 𝜎(𝐵). Taking 𝐶𝑝 = 𝛾2 > 0, we get  

 𝛼 = 𝐶𝑝〈𝐵𝑥, 𝑃(𝜆)𝑥〉. 
From 𝑦 = 𝛾𝑃(𝜆)𝑥, we have 1 = ‖𝑦‖ = |𝛾| ‖𝑃(𝜆)𝑥‖ as thus,  

  𝐶𝑝  = 𝛾2  = 1‖𝑃(𝜆)𝑥‖2  
 

Proposition 3.2 

The spectral measure of the unbounded Self-adjoint operator with simple spectra is a scalar multiple 

of that of its commutant.  

Proof 

From equation 3. 1 and 3.2 the complex Hilbert space ℍ = ⨁ ℍ𝑖𝑖∈ℕ  and Span(𝑃(𝜆𝑖)𝑥) = ℍ𝐼 where 𝑥 is a cyclic vector of 𝐹|ℍ𝐼 .  
Let  𝔗 ⊆ ℝ be a closed compact such that 𝜎(𝐵) ∈ 𝔗 where 𝐵 is a commutant of the unbounded Self-

adjoint operator with simple spectra, 𝐹. By corollary 3.1, 𝐵 is a Self-adjoint operator and by 

definition of commutativity provided, it is bounded. Then by the bounded version of the spectral 
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theorem for the Self-adjoint operator, there exists a unique spectral measure on the Borel sigma-

algebra of 𝔗 such that 

  𝐵 = ∫ 𝜆𝑖∗𝑑𝑃(𝜆𝑖∗)𝔗   
where 𝜆𝑖∗ ∈ 𝜎(𝐵), [1,2]. Since the underlying space is a separable Hilbert space, let 𝑃(𝜆𝑖∗) be a 

spectral projection on one of the closed subsets whose orthogonal direct sum is ℍ. To be precise, let 

it be a spectral projection on ℍ𝑖. Since 𝑥 ∈ ℍ𝑖 by definition,  then 𝑃𝐵(𝜆𝑖∗)𝑥 ∈ ℍ𝑖. 
The subspace ℍ𝑖 is span by (𝑃𝐹(𝜆𝑖)𝑥 then there is a nonzero constant 𝑎 such that 𝑃𝐵(𝜆𝑖∗)𝑥 = 𝑎(𝑃𝐹(𝜆𝑖)𝑥. 
Consequently,  

 𝑃𝐵(𝜆𝑖∗)𝑥 − 𝑎𝑃𝐹(𝜆𝑖)𝑥 = 𝟎                 (𝑃𝐵(𝜆𝑖∗) − 𝑎𝑃𝐹(𝜆𝑖))𝑥 = 𝟎            ‖(𝑃𝐵(𝜆𝑖∗) − 𝑎𝑃𝐹(𝜆𝑖))𝑥‖ = 0 

Since our subspace is a Complex Hilbert space, the ‖(𝑃𝐵(𝜆𝑖∗) − 𝑎𝑃𝐹(𝜆𝑖))𝑥‖ = 0 implies that 𝑃𝐵(𝜆𝑖∗) − 𝑎𝑃𝐹(𝜆𝑖) = 0, equivalently, 

  𝑃𝐵(𝜆𝑖∗) = 𝑎𝑃𝐹(𝜆𝑖)     𝑜𝑟        𝑃𝐹(𝜆𝑖) = 𝑏𝑃𝐵(𝜆𝑖∗) 

where 𝑏 = 1𝑎. This is valid since 𝑃𝐹(𝜆𝑖) is almost everywhere finite. The values 𝜆𝑖 and 𝜆𝑖∗ are such 

that  𝜆𝑖 ∈ 𝜎(𝐹|ℍ𝑖) ⊆ 𝜎(𝐹) and 𝜆𝑖∗ ∈ 𝜎(𝐵|ℍ𝑖) ⊆ 𝜎(𝐵) implying that 𝜆𝑖 ∈ 𝜎(𝐹)  and 𝜆𝑖∗ ∈ 𝜎(𝐵), therefore, 

the above result is valid for any  𝜆 ∈ 𝜎(𝐹)  and 𝜆∗ ∈ 𝜎(𝐵), hence  𝑃𝐹(𝜆) = 𝑏𝑃𝐵(𝜆∗). 
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